Comparison of time domain maximum likelihood method and sample maximum likelihood method in errors-in-variables identification
نویسندگان
چکیده
The time domain maximum likelihood (TML) method and the Sample Maximum Likelihood (SML) method are two general approaches for identifying errors-in-variables models. In the TML method, an important assumption is that the noise-free input signal must be a stationary process with rational spectrum. For SML, the noise-free input needs to be periodic. In this report, numerical comparisons of these two methods are done under different situations. The results suggest that TML and SML have similar estimation accuracy at moderate or high signal-to-noise ratio (SNR).
منابع مشابه
Accuracy analysis of time domain maximum likelihood method and sample maximum likelihood method for errors-in-variables identification
The time domain maximum likelihood (TML) method and the sample maximum Likelihood (SML) method are two approaches for identifying errors-invariables models. Both methods may give the optimal estimation accuracy (achieve Cramér-Rao lower bound) but in different senses. In the TML method, an important assumption is that the noise-free input signal is modeled as a stationary process with rational ...
متن کاملComparison of Maximum Likelihood Estimation and Bayesian with Generalized Gibbs Sampling for Ordinal Regression Analysis of Ovarian Hyperstimulation Syndrome
Background and Objectives: Analysis of ordinal data outcomes could lead to bias estimates and large variance in sparse one. The objective of this study is to compare parameter estimates of an ordinal regression model under maximum likelihood and Bayesian framework with generalized Gibbs sampling. The models were used to analyze ovarian hyperstimulation syndrome data. Methods: This study use...
متن کاملA comparison of algorithms for maximum likelihood estimation of Spatial GLM models
In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...
متن کاملImproving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach
A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...
متن کامل